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ABSTRACT

This paper deals with the problem of estimacing simultaneously the

parameters (cell probabilities) of m > 2 independent multinomial distri-

butions, with respect to a quadratic loss function. An empirical Bayes

estimator is given which is shown to have smaller risk than the maximum

likelihood estimator for sufficiently large values of m, at all points of

the parameter space outside its boundary.
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1. INTRODUCTION

The multinomial distribution arises in various statistical-analyses.

In this paper we consider the problem of estimating simultaneously the

parameters (cell probabilities) of m > 2 independent multinomial distri-

butions. A new estimator is obtained from empirical Bayes considerations,

where the estimate of the parameters of one distribution depends on the

observations taken from the other distributions. We compare the new esti-

mator with the maximum likelihood estimator (MLE) and show that for large

values of m the risk of the new estimator is smaller than the risk of the

MLE at all points excluding a small subset of the parameter space.

The problem of estimating the parameters of a multinomial distribu-

tion has been considered by various authors. Alam (1979) and Johnson

(1971) have shown that for m = I the MLE is admissible with respect to the

sum of squared errors as the loss function. The estimation of multinomial

probabilities has been considered from a decision theoretic point of view

by Steinhaus (1957), Trybula (1958) and Rutkowska (1977). In a recent

paper Olkin and Sobel (1979) have discussed the problem of estimating the

parameters of m > 2 binomial distributions.

In Section 2 we introduce the new empirical Bayes estimator. In Sec-

tion 3 we compare the risk of the empirical Bayes estimator with the MLE.

2. EMPIRICAL BAYES ESTIMATOR

Let xi a (xill*''"xiK), i - 1,...,m denote independent observations

from m multinomial distributions, each with K > 2 cells, where I MIX. n.

Let pi M (pil' '..PiK) denote the vector of cell probabilities associated

with the ith distribution. where PJ> 0, j - I,...,K and iK.P =1.
ij j 1 i
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For estimating the cell probabilities simultaneously, let the loss function

be given by

a1 m K2

L(6,P)- E (6ij-pij

where 6 denotes the estimate of PJj 6 - (6jj) and P (Pij)

First we obtain a Bayes estimator of P, as follows. Suppose that the

parameters of the m distributions are distributed a priori, independently

and identically according to the Dirichlet distribution, given by the den-

sity function

f(8,) r(KA) (8 K)-I

(r(x))

where X is a positive number, 0 < 8 < 1, j = 1,...,K and l 6 1.

A Bayes estimator of P with respect to the Dirichlet prior distribution is

given by 6 = (6ij), where

ij (x 1 .iJ+x)/(n+KX). (2.1)

K 2 = m m K 2

Let q 1 - j jiPV q Ji_1q and y j- xi, The risk of

6 is given by

2 2 2 -2
R(S ) = ((n-A K )q + K(K-l)A ](n+KA) -  (2.2)

The value of X minimizing R(6 ) is equal to X0, given by

A0 M q(K-I-Kq) -" (2.3)

Let R denote the value of R(6 ) for A X 0.' We have

R -.q__ < R(6 ) (2.4)
n+KA n

0
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where a denotes the MLE, given by 6 x /n. An unbiased estimator of
ij ij

q is given by q (mn 2-y)/mn(n-1). Substituting q for q in (2.3) we get an

estimated value of A, given by

- q(K-l-Kq)- I  (2.5)

for q - (K-1)/K.

Substituting A for A in (2.1), we obtain an empirical Bayes estimator

of P, given by

Sij = (x 4 (n+K ) (2.6)

= i/K for =

The quantity q is a measure of diversity of the ith multinomial distri-

bution. It is equal to zero when the probability mass of the distribution is

concentrated in a single cell. It achieves its maximum value equal to (K-I)/K

when the probability mass is equally distributed among the K cells of the

distribution. The value of q represents the average diversity of the m mul-

tinomial distributions. In the following section we show that the empirical

Bayes estimator 6 has smaller risk than the MLE for sufficiently large values

2
of mq . Therefore, in practice when the parameters of a large number of mul-

tinomial distributions are simultaneously estimated for which the average

diversity is unlikely to be very small, the empirical Bayes estimator should

be preferred to the MLE.

The preceding observation is supported by the numerical results shown

in Table 1 below. The table gives the empirical values of R( ), R(60 ) and

2mq for certain values of m, n, K and randomly chosen values of P. The value

0of R(9) and R(6O ) for any fixed value of P was obtained from simulation by

the Monte Carlo method. It is seen from the table that R(Z) < R(5 ) in all
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the observed cases except one when m - 5, n 1 i0, K -2 for which R(6) =

0
.0247 and R(50) = .0241. This case corresponds to the smallest value of

2
mq 2 0.2856 given in the table.

3. RISK OF 6

From (2.2) it is seen that R(6 ) first decreases then increases as A

varies from 0 to -. It is equal to q and K - q for X 0 and respec-
n K

tively. Hence, R(6 ) < R(6) for all positive values of X if > - q.
n K

Therefore, we shall assume that

n(K-l) (3.1)K(3.1)

The value of R(8) for large m is given as follows: From (2.3) and

(2.5) we get

(K-l)( (3.2)
0 (K-1-K4)(K-1-Kq)

Now, Eq q and Var(q) < n by Lemma 3.1 below. Therefore, for large m- n(n.-l)

EX X 0 + [K(K-1)/(K-l-Kq)21Var(q) + o(M) and (3.3)

2= 2 41 1
E(-A 0 ) (K-1)/(K-l-Kq) Var(q) + o(1). (3.4)

The value of R() as obtained from (2.6) by direct computation, is

given after simplification by

-R-2 ~-22
R(6) - R + nK(n+KXo) E(n+KX) (n(K-l)-K(n-l)q)(A-A0) (3.5)

(K-l) AO+(n-l)q-(n+KAo)q
+ 2nK(n+KX0) E(n+KX) (-A 0 )( n+K\ + ZI

where Z - nl N jow EZ 0 andm - i PiJ (xj -n ij)" E
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2m K 3 m

Var(z) =n-2 I p ij- (IC-q 1- (3.6)

l-2 q (l-q il

i-li

n
-q.-m

Using (3.3), (3.4), and (3.6) in (3.5) we get

R() uR + SS + o() (3.7)
wm

q( + + 1
;T+-Kl 0o(-)

2 2
where c - c(P) is a number less than K n in absolute value. Then

R( R.o(1- 1 c (-1 (3.8)

KXR0 ) - + 14

q(n+KX0 ) ) o(-)

q 2 [(n+KX0 )- (K-1-Kq)-I ] o(-).
n 0mq M*

By virtue of the inequality (3.1) the quantity inside the square bracket is

minorized by

K c

2n
2 (Kl) mq

Therefore, we have the following result.

Theorem 3.1. The empirical Bayes estimator has smaller risk than

0 2
the maximum likelihood estimator 6 for sufficiently large values of mq

Remark. It has been mentioned in the introduction that the MLE is

admissible with respect to the quadratic loss function when m 1 1. It is

also noted by Johnson (1971) that the admissibility of the HLE is essentially

for the reason that its risk is small near the boundary of the parameter
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space, given by q = 0. Therefore, the condition of Theorem 3.1 that the

value of q should be sufficiently large for the risk of to be smaller

than the risk of 60 is consistent with that observation. Johnson has also

noted that there is no Stein-effect for m > 1, that is, the MLE cannot be

improved upon by letting the estimate of parameters of one distribution de-

pend on the observations taken from the other distributions. Therefore,

0
we do not expect that a has a uniformly smaller risk than 6

Finally, we give the lemma which was used in the proof of Theorem 3.1.

Lemma 3.1. Var(q) < n
m(n-l)

Proof: We have

K 2 K 2 2 K 2 2
Var( x ( ) x)n- (E x..)

Sj=l j=l ii

22 
K  2 2

< (E K 2.)(n 2_E K x 2
j =1 j=1

<n(n -E x2.

= 
3 (n-l)qi.

Summing the above inequality for i 1,... ,m we have

Var(y) <_ mn3 (n-l)q.

Therefore

Var(q) < (3.9)
--r(n-l)"
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